Refine Your Search

Topic

Author

Search Results

Technical Paper

Measurements of Turbulent Flame Speed and Integral Length Scales in a Lean Stationary Premixed Flame

1998-02-23
981050
Turbulent premixed natural gas - air flame velocities have been measured in a stationary axi-symmetric burner using LDA. The flame was stabilized by letting the flow retard toward a stagnation plate downstream of the burner exit. Turbulence was generated by letting the flow pass through a plate with drilled holes. Three different hole diameters were used, 3, 6 and 10 mm, in order to achieve different turbulent length scales. Turbulent integral length scales were measured using two-point LDA and the stretching in terms of the Karlovitz number could be estimated from these measurements. The results support previous studies indicating that stretching reduces the flame speed.
Technical Paper

Combustion Chambers for Natural Gas SI Engines Part I: Fluid Flow and Combustion

1995-02-01
950469
The most economical way to convert truck and bus DI-diesel engines to natural gas operation is to replace the injector with a spark plug and modify the combustion chamber in the piston crown for spark ignition operation. The modification of the piston crown should give a geometry well suited for spark ignition operation with the original swirling inlet port. Ten different geometries were tried on a converted VOLVO TD102 engine and a remarkably large difference in the rate of combustion was noted between the chambers. To find an explanation for this difference a cycle resolved measurement of the in-cylinder mean velocity and turbulence was performed with Laser Doppler Velocimetry (LDV). The results show a high correlation between in cylinder turbulence and rate of heat release in the main part of combustion.
Technical Paper

Investigations of the Influence of Mixture Preparation on Cyclic Variations in a SI-Engine, Using Laser Induced Fluorescence

1995-02-01
950108
To study the effect of different injection timings on the charge inhomogeneity, planar laser-induced fluorescence (PLIF) was applied to an operating engine. Quantitative images of the fuel distribution within the engine were obtained. Since the fuel used, iso-octane, does not fluoresce, a dopant was required. Three-pentanone was found to have vapour pressure characteristics similar to those of iso-octane as well as low absorption and suitable spectral properties. A worst case estimation of the total accuracy from the PLIF images gives a maximum error of 0.03 in equivalence ratio. The results show that an early injection timing gives a higher degree of charge inhomogeneity close to the spark plug. It is also shown that charge inhomogeneity gives a more unstable engine operation. A correlation was noted between the combustion on a cycle to cycle basis and the average fuel concentration within a circular area close to the spark plug center.
Technical Paper

An Ionization Equilibrium Analysis of the Spark Plug as an Ionization Sensor

1996-02-01
960337
The use of a spark plug as an ionization sensor in an engine, and its physical and chemical explanation has been investigated. By applying a small constant DC voltage across the electrodes of the spark plug and measuring the current through the electrode gap, the state of the gas can be probed. An analytical expression for the current as a function of temperature is derived, and an inverse relation, where the pressure is a function of the current, is also presented. It is also found that a relatively minor species, NO, seems to be the major agent responsible for the conductivity of the hot gas in the spark gap.
Technical Paper

The Effect of Transfer Port Geometry on Scavenge Flow Velocities at High Engine Speed

1996-02-01
960366
2-D LDV measurements were performed on two different cylinder designs in a fired two-stroke engine running with wide-open throttle at 9000 rpm. The cylinders examined were one with open transfer channels and one with cup handle transfer channels. Optical access to the cylinder was achieved by removing the silencer and thereby gain optical access through the exhaust port. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the loop-scavenging effect was poor with open transfer channels, but clearly detectable with cup handle channels. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly in the middle of the cylinder. The seeding density was used to obtain information about the fuel concentration in the cylinder during scavenging.
Technical Paper

The Importance of High-Frequency, Small-Eddy Turbulence in Spark Ignited, Premixed Engine Combustion

1995-10-01
952409
The different roles played by small and large eddies in engine combustion were studied. Experiments compared natural gas combustion in a converted, single cylinder Volvo TD 102 engine and in a 125 mm cubical cell. Turbulence is used to enhance flame growth, ideally giving better efficiency and reduced cyclic variation. Both engine and test cell results showed that flame growth rate correlated best with the level of high frequency, small eddy turbulence. The more effective, small eddy turbulence also tended to lower cyclic variations. Large scales and bulk flows convected the flame relative to cool surfaces and were most important to the initial flame kernel.
Technical Paper

The Effect of Valve Strategy on In-Cylinder Flow and Combustion

1996-02-01
960582
This study is focused on the effect of different valve strategies on the in-cylinder flow and combustion A conventional four-valve pentroof engine was modified to enable optical access to the combustion chamber To get information on the flow, a two-component LDV system was applied The combustion was monitored by the use of cylinder pressure in a one-zone heat release model The results show that the flow in the cylinder with the valves operating in the standard configuration has an expected tumble characteristic In this case the high frequency turbulence is homogeneous and has a peak approximately 20 CAD BTDC With one valve deactivated, the flow shows a swirling pattern The turbulence is then less homogeneous but the level of turbulence is increased When the single inlet valve was phased late against the crankshaft dramatic effects on the flow resulted The late inlet valve opening introduced a low cylinder pressure before the valve opened The high pressure difference across the valve introduced a high-velocity jet into the cylinder Turbulence was increased by a factor of two by this operational mode When two inlet valves were used, a reduction of turbulence resulted from a very late inlet cam phase
Technical Paper

Crank Angle Resolved HC-Detection Using LIF in the Exhausts of Small Two-Stroke Engines Running at High Engine Speed

1996-10-01
961927
In order to separate the HC-emissions from two-stroke engines into short-circuit losses and emissions due to incomplete combustion, Laser Induced Fluorescence (LIF) measurements were performed on the exhaust gases just outside the exhaust ports of two engines of different designs. The difference between the two engines was the design of the transfer channels. One engine had “finger” transfer channels and one had “cup handle” transfer channels. Apart from that they were similar. The engine with “finger” transfer channels was earlier known to give more short-circuiting losses than the other engine, and that behavior was confirmed by these measurements. Generally, the results show that the emission of hydrocarbons has two peaks, one just after exhaust port opening and one late in the scavenging phase. The spectral information shows differences between the two peaks and it can be concluded that the latter peak is due to short-circuiting and the earlier due to incomplete combustion.
Technical Paper

Wavelet Analysis of In-Cylinder LDV Velocity Measurements

1996-10-01
961921
The object of this paper is to present a new way of analyzing in-cylinder velocity measurements. The technique is called Discrete Wavelet Transform (DWT) and it is similar to Fast Fourier Transform (FFT) with one important difference it is possible to obtain both time localized and frequency resolved information. This paper demonstrates the use of DWT calculations on in-cylinder LDV flow measurements for different combustion geometries in a natural gas converted truck engine. It will furthermore provide some information about how DWT can be used with in-cylinder measurements in the future.
Technical Paper

An Air Hybrid for High Power Absorption and Discharge

2005-05-11
2005-01-2137
An air hybrid is a vehicle with an ICE modified to also work as an air compressor and air motor. The engine is connected to two air reservoirs, normally the atmosphere and a high pressure tank. The main benefit of such a system is the possibility to make use of the kinetic energy of the vehicle otherwise lost when braking. The main difference between the air hybrid developed in this paper and earlier air hybrid concepts is the introduction of a pressure tank that substitutes the atmosphere as supplier of low air pressure. By this modification, a very high torque can be achieved in compressor mode as well as in air motor mode. A model of an air hybrid with two air tanks was created using the engine simulation code GT-Power. The results from the simulations were combined with a driving cycle to estimate the reduction in fuel consumption.
Technical Paper

Start of Injection Strategies for HCCI-combustion

2004-10-25
2004-01-2990
Homogeneous Charge Compression Ignition (HCCI) has a great potential for low NOx emissions but problems with emissions of unburned hydrocarbons (HC). One way of reducing the HC is to use direct injection. The purpose of this paper is to present experimental data on the trade off between NOx and HC. Injection timing, injection pressure and nozzle configuration all effect homogeneity of the mixture and thus the NOx and HC emissions. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. A common rail (CR) system has been used to control injection pressure and timing. The combustion using injectors with different nozzle hole diameters and spray angle, both colliding and non-colliding, has been studied. The NOx emission level changes with start of injection (SOI) and the levels are low for early injection timing, increasing with retarded SOI. Different injectors produce different NOx levels.
Technical Paper

Employing an Ionization Sensor for Combustion Diagnostics in a Lean Burn Natural Gas Engine

2001-03-05
2001-01-0992
An ionization sensor has been used to study the combustion process in a six-cylinder lean burn, truck-sized engine fueled with natural gas and optimized for low emissions of nitric oxides. The final goal of the investigations is to study the prospects of using the ionization sensor for finding the optimal operating position with respect to low NOx emission and stable engine operation. The results indicate that unstable combustion can be detected by analyzing the coefficient of variation (CoV) of the detector current amplitude. Close relationships between this measure and the CoV of the indicated mean effective pressure have been found during an air-fuel ratio scan with fixed ignition advance.
Technical Paper

Effect of Inhomogeneities in the End Gas Temperature Field on the Autoignition in SI Engines

2000-03-06
2000-01-0954
This paper reports an one–dimensional modeling procedure of the hot spot autoignition with a detailed chemistry and multi–species transport in the end gas in an SI engine. The governing equations for continuity of mass, momentum, energy and species for an one–dimensional, unsteady, compressible, laminar, reacting flow and thermal fields are discretized and solved by a fully implicit method. A chemical kinetic mechanism is used for the primary reference fuels n–heptane and iso–octane. This mechanism contains 510 chemical reactions and 75 species. The change of the cylinder pressure is calculated from both flame propagation and piston movement. The turbulent velocity of the propagating flame is modeled by the Wiebe function. Adiabatic conditions, calculated by minimizing Gibb's free energy at each time step, are assumed behind the flame front in the burned gas.
Technical Paper

Simple Feedback Control and Mode Switching Strategies for GDI Engines

2000-03-06
2000-01-0263
A novel approach to the control of a GDI engine is presented. The controller consists of a combination of sub-controllers, where torque feedback is a central part. The sub-controllers are with a few exceptions designed using simple linear feedback and feedforward control design methods. Special mode switch strategies are used to minimize the torque bumps during combustion mode changes. The controller has been evaluated on the European driving cycle using a dynamic simulation model, including a powertrain model and a driver model, with good results.
Technical Paper

Experimental Investigations of Flow and Temperature Fields in an SI Engine and Comparison with Numerical Analysis

1999-10-25
1999-01-3541
Two-dimensional cycle-resolved burnt gas temperatures were measured using two line atomic fluorescence (TLAF) in a single cylinder spark ignition car engine. Mapping of the in-cylinder flow was done under the same operating conditions using Particle Imaging Velocimetry (PIV). Experimental data for temperature and flow was compared to results from numerical simulations.
Technical Paper

A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging

1999-10-25
1999-01-3680
An experimental study of the Homogeneous Charge Compression Ignition (HCCI) combustion process has been conducted by using chemiluminescence imaging. The major intent was to characterize the flame structure and its transient behavior. To achieve this, time resolved images of the naturally emitted light were taken. Emitted light was studied by recording its spectral content and applying different filters to isolate species like OH and CH. Imaging was enabled by a truck-sized engine modified for optical access. An intensified digital camera was used for the imaging. Some imaging was done using a streak-camera, capable of taking eight arbitrarily spaced pictures during a single cycle, thus visualizing the progress of the combustion process. All imaging was done with similar operating conditions and a mixture of n-heptane and iso-octane was used as fuel. Some 20 crank angles before Top Dead Center (TDC), cool flames were found to exist.
Technical Paper

Interaction Between Turbulence and Flame in an S.I. Engine and in a Stationary Burner

1999-03-01
1999-01-0569
Turbulent flame speeds have been measured in a single cylinder S.I. engine and in a stationary atmospheric burner. One- and two-point LDA has been used to measure turbulence intensities and integral length scales. Stretching, in terms of Karlovitz numbers could be estimated from these measurements. The influence of moving average filtered turbulence on the flame speed in the S.I. engine is in agreement with the burner experiments. Previously reported signs of quenching of small flames in the S.I. engine, due to excessive turbulence could not be found for larger flames.
Technical Paper

Piston Temperature Measurement by Use of Thermographic Phosphors and Thermocouples in a Heavy-Duty Diesel Engine Run Under Partly Premixed Conditions

2005-04-11
2005-01-1646
Piston temperature experiments were conducted in a single-cylinder heavy-duty Diesel research engine, based on the Volvo Powertrain D12C engine both by use of optical temperature sensitive phosphor and of thermocouples mounted on the piston surface. In the former case, a thin coating of a suitable thermographic phosphor was applied to the areas on the piston surface to be investigated. The optical measurements of piston temperatures made involved use of an optical window and of an endoscope. The possibility of using optical fibres into guide light in and out of the engine was also investigated. Results of the optical and of the thermocouple measurements were compared and were also related to more global data with the aim of exploring the use of thermographic phosphors for piston- temperature measurements in Diesel engines. Thermographic phosphors thermometry was found to represent an alternative to the thermocouple method since it easily can be applied to various piston geometries.
Technical Paper

Laser Spectroscopic Investigation of Flow Fields and NO-Formation in a Realistic SI Engine

1998-02-23
980148
This paper presents results from a quantitative characterization of the NO distribution in a SI engine fueled with a stoichiometric iso-octane/air mixture. Different engine operating conditions were investigated and accurate results on NO concentrations were obtained from essentially the whole cylinder for crank angle ranges from ignition to the mid expansion stroke. The technique used to measure the two-dimensional NO concentration distributions was laser induced fluorescence utilizing a KrF excimer laser to excite the NO A-X (0,2) bandhead. Results were achieved with high temporal and spatial resolution. The accuracy of the measurements was estimated to be 30% for absolute concentration values and 20% for relative values. Images of NO distributions could also be used to evaluate the flame development. Both the mean and the variance of a combustion progress variable could be deduced.
Technical Paper

Development of High Speed Spectroscopic Imaging Techniques for the Time Resolved Study of Spark Ignition Phenomena

2000-10-16
2000-01-2833
This paper reports on the development of novel time resolved spectroscopic imaging techniques for the study of spark ignition phenomena in combustion cells and an SI-engine. The techniques are based on planar laser induced fluorescence imaging (PLIF) of OH radicals, on fuel tracer PLIF, and on chemiluminescence. The techniques could be achieved at repetition rates reaching several hundreds of kilo-Hz and were cycle resolved. These techniques offer a new path along which engine related diagnostics can be undertaken, providing a wealth of information on turbulent spark ignition.
X